SHORT STRUCTURAL PAPERS

Papers intended for publication under this heading must be in the format prescribed in Notes for Authors, Acta Cryst. (1978), A 34, 143–157.

Acta Cryst. (1978). B34, 3723–3725

Structure de l'Hydrogénophosphate d'Argent Ag₂HPO₄

Par Isaac Tordjman, Abdelhamid Boudjada, Jean-Claude Guitel et René Masse

Laboratoire de Cristallographie, CNRS, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 19 avril 1978, accepté le 1 août 1978)

Abstract. Ag₂HPO₄, trigonal, $P3_112$, a = 6.190 (2), c = 9.015 (6) Å, Z = 3. The structure has been solved by the Patterson method and refined by a least-squares method. It is built of individual PO₄ groups bridged by Ag-Ag pairs and hydrogen bonds.

Introduction. L'hydrogénophosphate d'argent Ag_2HPO_4 a été préparé pour la première fois par Berzélius (1816), en faisant réagir Ag_3PO_4 dans H_3PO_4 à 50% de P_2O_5 . Dufet (1886) et Joly (1886) ont repris la préparation de ce sel. Flatt & Brunisholz (1951) ont déterminé avec précision les conditions de cristallisation de Ag_2HPO_4 . Nous avons préparé ce sel en faisant réagir du carbonate d'argent Ag_2CO_3 sur l'acide phosphorique H_3PO_4 à 50% de P_2O_5 , à la température de 60°C:

$$Ag_2CO_3 + H_3PO_4 \rightarrow Ag_2HPO_4 + CO_2 + H_2O_4$$

Au bout de 24 h, on voit apparaître des monocristaux de Ag_2HPO_4 . Les cristaux se présentent sous deux formes: soient des prismes trigonaux allongés, soient des plaquettes trigonales, sections de ces mêmes prismes. Ce composé est stable à la température ambiante. Au contact de l'eau ou de l'alcool il se transforme instantanément en Ag_3PO_4 .

$$3Ag_{2}HPO_{4} \rightarrow 2Ag_{2}PO_{4} + H_{3}PO_{4}$$

 Ag_2HPO_4 est sensible à la lumière.

La maille cristalline de Ag₂HPO₄ a été affinée à partir de données enregistrées au diffractomètre de poudre, à la longueur d'onde λ (Cu $K\overline{\alpha}$) = 1,5418 Å. Le Tableau 1 donne les hauteurs des pics au-dessus du fond continu. a = 6,190 (2), c = 9,015 (6) Å. La maille obtenue au diffractomètre automatique est: a = 6,193 (4), c = 9,036 (8) Å. $D_x = 5,19$ g cm⁻³.

Les intensités diffractées ont été mesurées à l'aide d'un diffractomètre automatique Philips PW 1100, à la longueur d'onde $\lambda(\text{Ag } K\overline{\alpha}) = 0,5608$ Å avec monochromateur. Les dimensions du cristal sont: 0,11 \times 0,11 \times 0,11 mm.

Le coefficient linéaire d'absorption est $\mu = 50,5$ cm⁻¹. Nous n'avons pas appliqué de correction d'absorption. Domaine de mesure: $3-28 \circ \theta$. Mode de mesure: balayage en ω , largeur de balayage $1,2^{\circ}$, vitesse de balayage $0,02^{\circ}$ s⁻¹. Nombre de réflexions mesurées: 897. Nombre de réflexions obtenues après moyennes: 510. Nombre de réflexions conservées pour l'affinement ($10 < F_{o} < 100$): 470.

L'examen de la sommation de Patterson tridimensionnelle révèle une concentration des maxima de la fonction P(u,v,w) en w = 0, $\frac{1}{3}$ et $\frac{2}{3}$ étalés suivant une amplitude: $\Delta u = \Delta v = 2$ Å. L'interprétation s'est avérée difficile. Néanmoins, les deux sites Ag(1) et Ag(2) ont pu être localisés. Les atomes de phosphore et d'oxygène ont été trouvés par Fourier-différence. Une série d'affinements par la méthode des moindres carrés (Prewitt, 1966), écartant les réflexions faibles, conduit à

Tableau 1. Distances réticulaires de Ag_2HPO_4 (Å)

h k l	d _c	d_o	I/I_0
100	5,36	5,36	100,0
101	4,61	4,60	6,8
102	3,45	3,45	1,6
003	3,01	3,00	96,0
111	2,927	2,927	15,2
200	2,680	2,680	35,1
103	2,621	2,621	3,2
201	2,569	2,569	3,2
112	2,551	2,552	4,8
202	2,304	2,305	14,4
104	2,078	2,078	4,4
210	2,026	2,026	2,0
203	2,000	2,000	3,2
211	1,977	1,977	3,2
212	1,848	1,848	7,2
114	1,822	1,822	4,8
300	1,787	1,787	46,4

Tableau 2. Paramètres atomiques $(\times 10^4)$ et facteurs d'agitation thermique isotrope

		x	у	Z	$B_{\acute{eq}}$ (Å ²)
Ag(1)	3(a)		818 (1)	3333	1,92
Ag(2)	3(a)	2051 (1)	-2051(1)	3333	1,93
P	3(a)	5087 (3)	-5087 (3)	3333	0,89
Ō(1)	6(c)	266 (1)	412(1)	414 (1)	2,27
O(2)	6(<i>c</i>)	460 (1)	275 (1)	224 (1)	1,89

une valeur de $R_F = 5,2\%$ sur 470 réflexions.* Les sites ont été affinés dans le groupe spatial $P3_112$. Le Tableau 2 contient les paramètres atomiques.

Discussion. La structure de Ag_2HPO_4 est faite de tétraèdres PO_4 liés entre eux par des ponts constitués par des atomes d'argent et des atomes d'hydrogène. Ces mêmes atomes d'argent ont tendance à former une paire Ag-Ag.

La distance moyenne P–O à l'intérieur du tétraèdre PO₄ est de 1,53 Å. L'atome d'argent Ag(1) a quatre voisins oxygène dont deux à une distance courte et deux à une distance plus longue. L'atome d'argent Ag(2) a six voisins oxygène, deux à une distance courte et quatre à une distance plus longue (Tableau 3). On ne peut dire toutefois qu'il s'agit d'environnements tétraédrique et octaédrique rigoureux. La valeur des angles O(2)–Ag–O(1) montre bien que ces environnements sont très déformés. Ceci existe parce qu'en fait les atomes d'argent du site Ag(1) établissent une liaison avec ceux du site Ag(2) à la même cote pour former une paire Ag(1)–Ag(2) = 3,077 Å (Fig. 1). Nous donnons dans le Tableau 3 tous les éléments pour comprendre la configuration:

$$O(1) \to Ag(2) - Ag(1) \to O(1) \to O(1)$$

Nous n'avons pas pu localiser l'atome d'hydrogène à l'aide d'une Fourier-différence, à cause de la contribution importante des atomes d'argent et des autres atomes, mais l'examen des distances interatomiques nous montre une distance anormalement courte: 2,42 Å, entre deux atomes d'oxygène O(2) n'appartenant pas au même tétraèdre PO₄. Ceci ne peut s'expliquer que par l'intervention d'un pont hydrogène entre ces derniers. Un bilan des valences de la structure, utilisant la méthode de Donnay & Allmann (1970), confirme cette hypothèse, avec des distances O(2)—H de l'ordre

Tableau 3. Distances interatomiques (Å) et angles des liaisons (°)

P-O(1)	1,513 (11)		
P-O(2)	1,564 (10)	O(1)-P-O(1)	109,4 (5)
O(1) - O(1)	2,47 (2)	O(1) - P - O(2)	107,2 (5)
O(1)-O(2)	2,47 (2)	O(1) - P - O(2)	111,6 (5)
O(1) - O(2)	2,55 (1)	O(2)-P-O(2)	109,5 (5)
O(2)-O(2)	2,55 (2)		
Ag(1) - O(1)	2,230 (8)		
Ag(1) - O(2)	2,595 (10)		
Ag(2) - O(1)	2.682 (12)	Ag(1) - Ag(2) - O(1)	82,3 (3)
Ag(2) - O(1)	2,306 (10)	Ag(2) - Ag(1) - O(1)	87,5 (3)
Ag(2) - O(2)	2,756 (8)		
Ag(1) - Ag(2)	3,077 (1)		
	2 42 (2)		
O(2) - O(2)	2,42 (2)		

Fig. 1. Projection suivant c dans une maille triple hexagonale de la structure de Ag, HPO₄.

de 1,21 Å, ce qui nous permet de placer l'atome d'hydrogène en position $x, 2x, \frac{1}{6}$ du groupe $P3_112$ avec x = 0.62.

L'examen de la Fig. 1 nous montre que les atomes d'argent du site Ag(1) sont dans un canal et les atomes d'hydrogène aussi.

Il est intéressant de constater que ce sel d'argent comme quelques autres: Ag_2F (Argay & Náray-Szabŏ, 1966), Ag_3PO_4 (Masse, Tordjman & Durif, 1976), $Ag_6Si_2O_7$ (Jansen, 1977), $AgHg_2PO_4$ (Masse, Guitel & Durif, 1978), maintenant bien connus, montrent la possibilité pour les atomes d'argent de se lier pour former des paires Ag-Ag. L'argent comme de nombreux autres métaux a tendance à former des amas.

Références

- ARGAY, GY. & NÁRAY-SZABŎ, I. (1966). Acta Chim. Acad. Sci. Hung. 49, 329–337.
- BERZÉLIUS, J. J. (1816). Nouveau Traité de Chimie Minérale, Tome III, p. 601. Paris: Masson.

^{*} Les listes des facteurs de structure, des paramètres thermiques anisotropes et des longueurs des axes principaux des ellipsoïdes de vibration thermique et leur orientation par rapport aux axes cristallographiques ont été déposés au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 33821: 6 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, Angleterre.

- DONNAY, G. & ALLMANN, R. (1970). Am. Mineral. 55, 1003–1015.
- DUFFET, H. (1886). Bull. Soc. Fr. Minéral. 9, 36-39.
- FLATT, R. & BRUNISHOLZ, G. (1951). Helv. Chim. Acta, 34, 692–699.
- JANSEN, M. (1977). Acta Cryst. B33, 3584-3586.
- JOLY, A. (1886). C. R. Acad. Sci. 103, 1071-1074.
- MASSE, R., GUITEL, J. C. & DURIF, A. (1978). J. Solid State Chem. 23, 369–373.
- MASSE, R., TORDJMAN, I. & DURIF, A. (1976). Z. Kristallogr. 144, 76-81.
- PREWITT, C. T. (1966). SFLS-5. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.

Acta Cryst. (1978). B34, 3725-3727

Structure de l'Hydrogénobis(chromato)arsénate de Potassium K₂HCr₂AsO₁₀ et Données Cristallographiques sur K₂HCr₂PO₁₀

PAR M. T. AVERBUCH-POUCHOT, A. DURIF ET J. C. GUITEL

Laboratoire de Cristallographie, CNRS, 166 X, 38042 Grenoble CEDEX, France

(Reçu le 14 juin 1978, accepté le 1 août 1978)

Abstract. $K_2HCr_2AsO_{10}$, trigonal $P3_1$, a = 7.712 (3), c = 14.644 (8) Å, Z = 3. $K_2HCr_2PO_{10}$, a = 7.572 (2), c = 14.460 (4) Å. The crystal structure of K_2HCr_2 - AsO_{10} has been solved by using 1170 independent reflexions. The final *R* value is 0.054. The Cr_2AsO_{10} anion is a linear linkage of three tetrahedra, similar to those already described for $BaHCr_2PO_{10}$. $3H_2O$ and $BaHCr_2PO_{10}$. H_2O .

Introduction. Les cristaux orangés de $K_2HCr_2AsO_{10}$ se présentent sous la forme de prismes hexagonaux trapus. Une méthode de préparation consiste à porter quelques minutes à l'ébullition une solution de 100 cm³ renfermant 20 g de $K_2Cr_2O_7$ et 10 cm³ d'acide arsénique. Dans la solution ainsi obtenue, les premiers cristaux apparaissent après quelques heures à température ambiante.

Une étude préliminaire d'un cristal de K₂HCr₂AsO₁₀ par la technique de Weissenberg, montre que ce composé est trigonal avec comme seule règle d'extinction: 00/ n'existent qu'avec l = 3n. Le Tableau I donne le dépouillement d'un diagramme de poudre effectué à vitesse lente $\left[\frac{1}{8}^{\circ}(\theta) \min^{-1}\right]$, à l'aide d'un diffractomètre Philips Norelco utilisant la longueur d'onde du cuivre ($K\alpha_1\alpha_2$). Un affinement par moindres carrés à partir de ces données angulaires conduit à une maille: a = 7,702 (1), c = 14,627 (4) Å, renfermant trois unités formulaires.

Ces valeurs diffèrent légèrement de celles obtenues à l'aide du diffractomètre automatique et reportées dans le résumé. Le phospho-chromate correspondant $K_2HCr_2PO_{10}$, dont la méthode de préparation est identique à celle décrite pour le sel précédent, est isotype de celui-ci.

Le dépouillement d'un diagramme de poudre de ce sel effectué dans les mêmes conditions expérimentales que celles données pour l'arsénato-chromate, est donné dans le Tableau 2.

Tableau 1. Dépouillement d'un diagramme de poudre de K₂HCr₂AsO₁₀

h k l	do	d_c	I _o	h k l	d_o	d_c	I_o
100	6,68	6,67	74	210	2,522	2,521	123
101	6,07	6,07	20	211	2,485	2,484	99
102	4,93	4,93	23	204	2,463	2,464	9
003	4,88	4,88	30	006	2,439	2,438	14
103	3,936	3,936	51	212	2,383	2,383	26
110	3,854	3,851	139	300	2,225	2,223	7
111	3,723	3,724	27	302	2,127	2,127	14
112	3,407	3,407	82	214	2,076	2,076	180
200	3,339	3,335	1000	220	1,927	1,926	9
201	3,250	3.252	41	215)	1 000	1,910)	~ 1
104	3,206	3,206	97	221)	1,909	1,909	21
113	3,028	3,022	16	310	1,848	1,850	51
114	2,650	2.652	82				

Tableau 2. Dépouillement d'un diagramme de poudre de K₂HCr₂PO₁₀

h k l	d_{c}	d_o	I_o	h k l	d_{c}	d_o	I_o
102	4,86	4,86	15	204	2,429	2,427	7
110	3,786	3,786	254	212	2,345	2,344	9
112	3,354	3,352	17	300	2,186	2,185	33
200	3,279	3,280	1000	214	2,044	2,045	21
104	3,166	3,164	35	220	1,893	1,893	15
202	2,986	2,983	3	304	1,870	1,870	5
114	2,615	2,613	7	310	1,819	1,819	47
210	2,479	2,478	51				